Aaron C. Goldstrohm, Ph.D.

Assistant Professor, Biological Chemistry

B.S. Pennsylvania State University
Ph.D. Duke University
Postdoctoral, University of Wisconsin – Madison

Research Profile

Mission Statement

Our goal is to discover the principles and mechanisms that control expression of genes, with the benefit to society that this knowledge will enhance our understanding of the causes of disease and advance therapeutic strategies to correct deleterious gene expression.


Gene regulation, post-transcriptional control of messenger RNA stability, translation and localization by RNA-binding proteins, mRNA untranslated regions, and nucleases. Genetic mechanisms of development, cancer and obesity.


Our goal is to understand how messenger RNAs are regulated. Regulation of translation, degradation and localization of mRNAs contributes to the enormous dynamic range of protein expression. Misregulation can cause disease, developmental defects, or death. Sequence specific RNA-binding factors, both protein and small RNAs, play a central role in mRNA regulation. Our research focuses on two important classes of regulatory proteins: PUFs and deadenylases

PUF proteins
We study PUF proteins, a family of regulators that bind certain mRNAs with exquisite specificity and repress their expression. PUF proteins have diverse biological roles in development, stem cell proliferation, and fertility. PUFs also control neurological processes including motor neuron function, learning and memory formation. Our goals are to identify the mRNAs that PUF proteins regulate and determine the molecular mechanism of repression. To accomplish this, we use a combination of biochemistry, genetics, bioinformatics, transcriptomics, and high throughput assays in multiple organisms including Humans, Drosophila and Yeast. This research has direct impact on genetic mechanisms that control development, neurological function, and cancer.

Ribonucleases play critical roles in regulating mRNAs. Deadenylases are specialized ribonucleases that degrade the poly(Adenosine) tails of mRNAs. Regulation of poly(A) tail length is emerging as a critical control point for translation and mRNA degradation in a wide variety of biological contexts. Indeed, we found that specific deadenylases play a central role in PUF regulation. PUF proteins enhance deadenylation of the mRNAs they bind by directly recruiting the deadenylase enzyme complex.

The versatility of regulation by deadenylation is greatly expanded in higher eukaryotes through diversification of deadenylases. For instance, humans possess twelve deadenylase orthologs. Genetic analysis indicates that each deadenylase controls unique biological functions including cell division and growth, metabolism, development, bone morphogenesis and anti-viral responses. We are exploring the questions: how many active deadenylases are there, do their catalytic activities differ, which mRNAs do they act upon, and how are their activities controlled?

Research Support

National Institutes of Health 1R01GM105707
American Cancer Society Research Scholar Grant
Edward Mallinckrodt Jr. Foundation Grant
Center for Genetics in Health and Medicine, University of Michigan, Genomics and Genetics Pilot Grant
Rackham Faculty Research Grant
Promega New Investigator Award


Medical Education Scholars Program
University of Michigan Biological Scholars Program
Paul D. Boyer Postdoctoral Excellence Award
Barry M. Goldwater Scholarship for Academic Excellence in Science, Mathematics, and Engineering
Howard Hughes Medical Institute Undergraduate Scholars Program
Pennsylvania Governor"s School for the Agricultural Sciences

Program Affiliations

Biological Chemistry Graduate Program
Cellular and Molecular Biology Training Program
Genetics Training Program
Cellular Biotechnology Training Program
Medical Student Biomedical Research Program
UROP: Undergraduate Research Opportunity Program
RNA Supergroup http://www.biochem.med.umich.edu/?q=research
University of Michigan Comprehensive Cancer Center
University of Michigan Center for Genetics in Health and Medicine
Michigan Metabolomics and Obesity Center


Biolchem 415 and 515: Introductory Biochemistry, Course Director
Biolchem 650: Mechanisms of Eukaryotic Gene Expression and Regulation


Chase Weidmann, Nathan Raynard, Nathan Blewett, Jamie Van Etten, and Aaron Goldstrohm. (2014)
The RNA binding domain of Pumilio antagonizes poly-adenosine binding protein and accelerates deadenylation. RNA Journal. In Press.

Joel Hrit, Nathan Raynard, Jamie Van Etten, Kamya Sankar, Adam Petterson, and Aaron C. Goldstrohm. (2014) In Vitro Analysis of RNA Degradation Catalyzed by Deadenylase Enzymes. Methods in Molecular Biology. 1125:325-39.

Jamie Van Etten, Trista Schagat, and Aaron Goldstrohm. (2013) A Guide to Design and Optimization of Reporter Assays for 3' Untranslated Region Mediated Regulation of Mammalian Messenger RNAs. Methods. 63:110-118.

Jamie Van Etten, Trista Schagat, Joel Hrit, Chase Weidmann, Justin Brumbaugh, Joshua Coon, and Aaron Goldstrohm. (2012) Human Pumilio proteins recruit multiple deadenylases to efficiently repress messenger RNAs. Journal of Biological Chemistry. 287, 36370-36383
PMID: 22955276
- Most read JBC RNA paper

Nathan Blewett and Aaron Goldstrohm. (2012) A Eukaryotic Translation Initiation Factor 4E-Binding Protein Promotes mRNA Decapping and is Required for PUF Repression. Molecular and Cellular Biology. 32: 4181-4194
PMID: 22890846

Chase Weidmann and Aaron Goldstrohm. (2012) Drosophila Pumilio protein contains multiple autonomous repression domains that regulate mRNAs independently of Nanos and Brain Tumor. Molecular and Cellular Biology. 32(2):527-40

Nathan Blewett, Jeff Coller and Aaron Goldstrohm. (2011) A quantitative assay for measuring mRNA decapping by splinted ligation reverse transcription polymerase chain reaction: qSL-RT-PCR. RNA. 17(3):535-43

Nayoung Suh, Sarah L. Crittenden*, Aaron Goldstrohm*, Brad Hook, Beth Thompson, Marvin Wickens and Judith Kimble. (2009) FBF and its control of gld-1 expression in the C. elegans germline. Genetics. (* coauthors)
PMID: 19221201

Aaron Goldstrohm and Marvin Wickens. (2008) Multifunctional deadenylase complexes diversify mRNA control. Nature Reviews Molecular Cell Biology. 9, 337-344.
PMID: 18334997

Aaron Goldstrohm, Brad Hook and Marvin Wickens. (2008) Regulated deadenylation in vitro. Methods in Enzymology. 448:77-106.
PMID: 19111172

Brad Hook, Aaron Goldstrohm, Daniel Seay, and Marvin Wickens. (2007) Two yeast PUF proteins negatively regulate a single mRNA. Journal of Biological Chemistry. 282, 15430-15438.
PMID: 17389596

Aaron Goldstrohm, Daniel Seay, Brad Hook, and Marvin Wickens. (2007) PUF protein mediated deadenylation is catalyzed by Ccr4p. Journal of Biological Chemistry. 228, 109-114.
PMID: 17090538

Aaron Goldstrohm, Brad Hook, Daniel Seay, and Marvin Wickens. (2006) PUF proteins bind Pop2p to regulate mRNAs. Nature Structural and Molecular Biology. 13, 533-539.
PMID: 16715093
- Commentary: R. Wharton and A. Aggarwal. (2006) mRNA regulation by PUF domain proteins. 2006. Science STKE. Sept. 20.

Miguel Sánchez Alvarez*, Aaron Goldstrohm*, Mariano Garcia-Blanco, and Carlos Suñé. (2006) The human transcription elongation factor CA150 localizes to splicing factor-rich nuclear speckles and assembles transcription and splicing components into complexes through its amino and carboxyl regions. Molecular and Cellular Biology. 26, 4998-5014. (*coauthors)
PMID: 16782886

Marvin Wickens and Aaron Goldstrohm. (2003) A Place to Die, a Place to Sleep. Science. 300, 753-755.
PMID: 12730589

Aaron Goldstrohm, Todd Albrecht, Carlos Suñé, Mark Bedford, and Mariano Garcia-Blanco. (2001) The human transcription elongation factor CA150 interacts with RNA Polymerase II and the pre-mRNA splicing factor SF1. Molecular and Cellular Biology. 21. 7617-7628.
PMID: 11604498

Aaron Goldstrohm, Arno Greenleaf, and Mariano Garcia-Blanco. (2001) Co-transcriptional Splicing of Pre-messenger RNAs: Considerations for the Mechanism of Alternative Splicing. Gene. 277, 31-47.
PMID: 11602343

Carlos Suñé*, Aaron Goldstrohm*, Junmin Peng, David Price, and Mariano Garcia-Blanco. (2000) An in vitro transcription system that recapitulates EIAV Tat-mediated inhibition of HIV-1 Tat activity demonstrates a role for P-TEFb and associated proteins in the mechanism of Tat activation. Virology. 274, 356-366. (* coauthors)
PMID: 10964778

Sherry Carty, Aaron Goldstrohm, Carlos Suñé, Mariano Garcia-Blanco, and Arno Greenleaf. (2000) Protein-interaction modules that organize nuclear function: FF domains of CA150 bind the phosphor-CTD of RNA polymerase II. Proceedings of the National Academy of Sciences. 97, 9015-902.
PMID: 10908677

Research Team

Rene Arvola - Graduate Student, Genetics Training Program
Jennifer Bohn - Graduate Student, Cellular Biotechnology Training Program
Elizabeth Abshire - Graduate Student, Chemistry-Biology Interface Training Program, co-mentored with Raymond Trievel
Jordan Killingsworth - Undergraduate Student
Nathan Raynard - Graduate Student, Genetics Training Program
Trista Schagat, Ph.D. - Adjunct Research Investigator
Chase Weidmann - Graduate Student, Genetics Training Program
May Tsoi - Research Lab Technician
Michael Kearse, Ph.D. - Kirschstein NRSA Postdoctoral Fellow, co-mentored with Dr. Peter Todd


Joel Hrit, Biochemistry 2012, Honors Thesis - now Graduate Student, Univ. of California San Francisco
Kamya Sankar, Biochemistry 2010, Honors Thesis - now Medical Student, Wayne State Univ.
Adam Petterson, Biochemistry 2010, Univ. Chicago - now employed by Illumina
Kelly Compton 2013 - UROP Student
Nathan Blewett, PhD - Graduate Student 2008-2013, CMB Training Program - now Postdoctoral Scientist at NIH
Isabel Georges - Undergraduate Student
Jamie Van Etten, PhD - Graduate Student 2010-2013 - now Postdoctoral Scientist at University of Minnesota


Raymond Trievel, Ph.D. http://www.biochem.med.umich.edu/?q=rtrievel
Peter Todd, M.D., Ph.D. http://www.umich.edu/~neurosci/faculty/petertod.htm
Craig Smibert, Ph.D. http://biochemistry.utoronto.ca/smibert/bch.html
Howard Lipshitz, Ph.D. http://www.utoronto.ca/flylab/Liplab1/Home.html
Richard McEachin, Ph.D. http://www.ccmb.med.umich.edu/node/244


Office: 3220A MSRB3, Box 5606
PH: (734) 647-5830

Pubmed search terms: goldstrohm ac, goldstrohm a

Graduate students, postdoctoral scientists, and undergraduates who are interested in working with Dr. Goldstrohm may contact him directly.